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Games People Play  
(With Algorithms)

THE DATING GAME

In 2013, a journalist named Amanda Lewis wrote an insightful article 
for LA Weekly about her experiences with a recently launched online 
dating app named Coffee Meets Bagel. One of the app’s novelties was 
to apply the notion of economic scarcity to romantic matchmaking. 
Instead of encouraging users to indiscriminately spam potential dates 
with a barrage of online flirts, nudges, and winks, Coffee Meets Bagel 
limited users to a single, algorithmically proposed match or date each 
day, which they could accept or reject. Presumably the idea was to raise 
the value or demand for matches by artificially restricting the supply.

But Lewis went on to detail other “economic” side effects of the 
app that were perhaps less intentional, and less desirable—side effects 
that can be understood via game theory, the branch of economics that 
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deals with strategic interactions between groups of self-interested in-
dividuals. Coffee Meets Bagel invited users to specify racial, religious, 
and other preferences in their matches, which the algorithm would 
then try to obey in selecting their daily proposals.

Lewis described how after not specifying any racial preferences (or, 
more precisely, indicating that she was willing to be matched with 
people from any of the site’s listed racial groups), she began to receive 
daily matches exclusively with Asian men. The problem was that if there 
were even a slight imbalance in the number of women who accept 
matches with Asian men, and the number of Asian men, there would 
be an oversupply of Asian men in the app’s user population. And since 
the matching algorithm obeys users’ stated preferences, the necessary 
consequence was that women who did not explicitly exclude Asian 
men from their preferences would be matched with them frequently.

Given the preferences selected by the rest of the user population, 
Lewis’s “best response” (a game theory term)—that is, her only choice 
if she wanted to be matched with men from other races too—was to 
modify her stated preferences to say that she was unwilling to be 
matched with Asian men. She reluctantly did so, even though this was 
not what she originally wanted. Of course, this only exacerbates the 
original oversupply problem, creating a feedback loop that encour-
ages other users to do the same.

It seemed as though Lewis had been cornered into choosing be-
tween two undesirable alternatives—cornered by the stated prefer-
ences of other users, and by an algorithm that blindly and myopically 
obeyed those preferences for each user individually, without regard 
for the macroscopic consequences. At least from Lewis’s perspective, 
the system was trapped in what a game theorist might call a “bad 
equilibrium.” If all of the users of the app could have simultaneously 
coordinated to change their preferences, they might all have been 
happier with their resulting set of matches—but each of them indi-
vidually was helpless to escape this bad outcome. It’s a bit like a run 
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on the banks in a financial crisis—even though it makes us all collec-
tively worse off, it’s still in your selfish interest to withdraw your 
money before it’s too late.

WHEN PEOPLE ARE THE PROBLEM

There are some important similarities and differences between the 
dilemma Lewis found herself in on Coffee Meets Bagel and the prob-
lems of fairness and privacy considered in earlier chapters. In all three 
settings, algorithms play a central role—algorithms acting on, and often 
building predictive models from, people’s data. But in algorithmic 
violations of fairness and privacy, it seemed reasonable to view the 
algorithm as the “perpetrator” and people as the “victims,” at least to 
a first approximation. As we saw, machine learning algorithms opti-
mizing solely for predictive accuracy may discriminate against racial 
or gender groups, while algorithms computing aggregate statistics or 
models from behavioral or medical data may leak compromising in-
formation about specific individuals. But the people themselves were 
not conspirators in these violations of social norms—indeed, they 
may not even be aware that their data is contributing to a credit scoring 
or disease prediction model, and may not interact with those models 
at all. And since the problems we identified were largely algorithmic, 
we could propose algorithmic solutions that were better behaved.

The Coffee Meets Bagel conundrum is more nuanced. We might 
argue that Lewis is also a victim of sorts—she recounts feelings of guilt 
when the algorithm forces her to declare what feel like racist prefer-
ences, just in order to avoid being always matched with a homoge-
neous group. It seems unfair in a way not dissimilar to algorithmic 
discrimination. But the key difference is that we can no longer place 
the blame exclusively or even largely on the algorithm alone—the 
other users, and their competing preferences, are complicit in Lewis’s 
dilemma. After all, it wasn’t the algorithm’s fault that there were too 
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many Asian men in the system relative to the population of women 
who reported a willingness to date them. The algorithm was simply 
trying to act as a mediator of sorts, attempting to satisfy each user’s 
dating preferences in light of those of other users. We might even say 
that the algorithm was doing the most obvious and natural thing with 
the data it was given, and that the real problem was the data—the 
preferences themselves.

We’ll eventually see that despite the complicity of users, we shouldn’t 
let algorithms off the hook quite so easily, and that in many settings in 
which user preferences are centrally involved, there are still algorithmic 
techniques that can avoid the bad equilibrium in which Lewis became 
trapped. In particular, sometimes there might be multiple equilibria, 
and an algorithm might be able to choose, or nudge its users toward, 
a better one. In the case of Coffee Meets Bagel, maybe everyone’s pref-
erences were like Amanda’s—wanting only a diversity of matches—
and everyone felt trapped into entering preferences that weren’t quite 
truthful. Maybe a different algorithm could have done better and in-
centivized everyone to enter their real preferences. And in other 
settings we might prefer an algorithm that doesn’t encourage or 
implement any equilibrium at all, but instead finds a solution that 
makes the overall “social welfare” higher. But unlike the fairness and 
privacy chapters, to discuss these algorithmic alternatives, we need to 
put the users, and their preferences, on center stage. And this in turn 
leads us to the powerful concepts and tools of game theory.

JUMP BALLS AND BOMBS

Many readers may have encountered a little game theory, owing in part 
to its generality and its ability to sometimes generate counterintuitive 
insights about everyday scenarios. Informally speaking, an equilib-
rium in game theory can be described as a situation in which all par-
ticipants are acting in their own self-interest, given what everyone 
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else is doing. The key aspect of the definition—which we’ll make a bit 
more precise when it’s called for—is the notion of selfish, unilateral sta-
bility it embodies. It is assumed that each “player” in the system (such 
as a user of Coffee Meets Bagel) will behave selfishly (for example, by 
setting or changing her dating preferences) to advance her own goals, 
in response to similarly selfish behavior by others, and without 
regard to the consequences for other players or the global outcome.

An equilibrium is thus a kind of selfish standoff, in which all players 
are optimizing their own situation simultaneously, and no one can 
improve their situation by themselves. Technically speaking, the un-
derlying mathematical notion of equilibrium we refer to here is 
known as a Nash equilibrium, named for the Nobel Prize–winning 
mathematician and economist John Forbes Nash, who proved that 
such equilibria always exist under very general conditions. We’ll 
shortly have reason to consider non-equilibrium solutions to game-
theoretic interactions, as well as alternative notions of equilibrium 
that are more cooperative.

When equilibrium is described as a selfish standoff, it’s not partic-
ularly surprising that sometimes equilibrium can be undesirable to 
any particular individual in the system (like Amanda Lewis), or even 
to the entire population. In the words of the late economist Thomas 
Schelling (another Nobel Prize winner), who applied equilibrium 
analysis to things as varied as housing choices, traffic jams, sending 
holiday greeting cards, and choosing a seat in an auditorium, “The 
body of a hanged man is in equilibrium, but nobody is going to insist 
the man is all right.”

While the competitive, selfish nature of our equilibrium notion 
might seem a bit cynical or depressing—everyone is simply out for 
themselves, and optimizing their choices and behavior in light of eve-
ryone else’s greedy behavior—it can also provide valuable clues to 
why and how things can sometimes go wrong in settings in which 
there are conflicting preferences (like racial preferences in a dating 
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app). And it does not preclude cooperative behavior if there just 
so happens to be a solution in which cooperation is in everyone’s 
self-interest. Closest to our own selfish interests, it turns out that 
sometimes game theory can not only describe what might go wrong 
at equilibrium but also can provide algorithmic prescriptions for 
making the outcome better.

For much of its long and storied history—depending on how one 
counts, the field dates to at least the 1930s—game theory trafficked 
primarily in the precise understanding of simple and highly stylized 
versions of real-world problems. These stylizations could often be de-
scribed by small tables of numbers specifying the payoffs of just two 
players (and therefore their preferences, since it is assumed that a 
player will always prefer whatever offers their highest payoff, in light 
of the opponent’s behavior). Classic examples include Rock-Paper-
Scissors (useful in the real world as an alternative to jump balls in recre-
ational basketball), where, for instance, choosing Rock yields payoff +1 
against Scissors, which in turn receives payoff -1. The equilibrium turns 
out to be both players uniformly randomizing among their choices, 
playing Rock, Paper, and Scissors with probability 1/3 each. This is the 
only solution with the aforementioned unilateral stability property—if 
I uniformly randomize, your best response is to do so as well, and if 
you do anything else (such as playing Paper even slightly more often 
than the other two choices), I’ll exploit that and punish you (by 
always playing Scissors). Some readers may be even more familiar 
with Prisoner’s Dilemma, another simple game that has a disturbing 
equilibrium in which both players sabotage each other to their mutual 
harm, even though there is a cooperative non-equilibrium outcome 
in which they both benefit. As the story goes, two accomplices to a 
crime are captured and held in separate cells. They can either “coop-
erate” with their accomplice and admit to nothing or “defect” and admit 
to the crime and testify against their partner. If your partner defects 
and testifies against you, you get a long sentence. If your partner 
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cooperates, you get only a short one. And if you defect, the prosecutor 
offers to shave a little bit off the sentence you would have otherwise 
received. The problem is that if I cooperate, you can do even better by 
sabotaging me and defecting, and vice versa. When we both defect, 
we each experience close to the worst possible outcome. But since 
mutual cooperation is not unilaterally stable, we drag each other into 
the sabotaging abyss of equilibrium, hence the “dilemma”.

Despite the simplicity of such games, they have occasionally been 
applied to rather serious and high-stakes problems. During the Cold 
War, researchers at the RAND Corporation (a long-standing think 
tank for political and strategic consulting) and elsewhere used game-
theoretic models to try to understand the possible outcomes of US-
Soviet nuclear war and détente—efforts that were memorably if darkly 
lampooned in the 1964 Stanley Kubrick film Dr. Strangelove, which ends 
with the Prisoner’s Dilemma–like nuclear annihilation of the world. 
But the lasting influence and scope of game theory (which has also 
been widely applied to evolutionary biology and many other fields far 
from its origins) bears testament to the value of deeply understanding 
a “toy” version of a complex problem. By distilling strategic tensions 
down to tables of numbers with maybe only a few rows and columns, 
game theorists could solve exactly for the equilibrium and try to un-
derstand its ramifications for the real problem—which was usually 
considerably more complicated, messy, and imprecise.

As we shall see, the technological revolution of the last two de-
cades has considerably expanded the scope and applicability of game-
theoretic reasoning, while at the same time challenging the field to 
tackle problems of unprecedented scale and complexity—problems 
involving sophisticated algorithms operating on rich datasets gener-
ated by thousands, millions, or sometimes billions of users. Reducing 
such problems to simple models of the Rock-Paper-Scissors or Prisoner’s 
Dilemma variety is entirely infeasible and would throw away too 
much salient detail to be even remotely useful. The matchmaking 
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equilibrium determined by the dating preferences of the users of Coffee 
Meets Bagel simply isn’t something that can be computed by hand 
and understood with just a few numbers. It would itself require an 
algorithm to compute, which in an informal sense is exactly what the 
app provides.

To tackle such challenges, the new field of algorithmic game theory 
has emerged and developed rapidly. It blends ideas and methods from 
classic game theory and microeconomics with modern algorithm design, 
computational complexity, and machine learning, with the goal of devel-
oping efficient algorithmic solutions to complex strategic interactions be-
tween very large numbers of players. At a minimum, it aspires to broadly 
understand what might happen in systems like Coffee Meets Bagel. At its 
best, it is not only descriptive but also prescriptive—as in the fairness and 
privacy chapters, telling us how to design socially better algorithms, 
but now in settings in which the incentives and preferences of users, 
and how we will examine in act on them, must be taken into account. 
These are the topics we will examine in this chapter.

THE COMMUTING GAME

To illustrate how the scale and power of modern technology have made 
algorithmic game theory relevant, let’s consider an activity that many 
people engage in every day but may never have thought about as a 
“game” before: driving a car. Suppose you live in a busy metropolitan 
area with congested roads, and each day you must drive from your 
house in the suburbs to your workplace downtown. There is a com-
plex network of freeways, highways, streets, thoroughfares, and back 
roads you must navigate, and the number of plausible routes you 
could take might be very large indeed. For instance, maybe the most 
straightforward route is to get on the freeway at the entrance nearest 
your home, get off at the exit nearest your workplace, and drive on 
the main surface streets before and after the freeway. But maybe one 
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segment of the freeway often has bumper-to-bumper traffic during 
your commute time, so sometimes it’s better to get off earlier, take some 
back roads through a residential neighborhood, and rejoin the 
freeway later. And on any given day, transient conditions—a traffic 
accident, road construction or closures, a ball game—might render 
your usual route much slower than some other alternative.

If you think about it, on a moderately long commute in a busy city 
the number of distinct routes you might take or at least try over time 
could be in the dozens or even hundreds. Of course, these different 
routes might overlap to varying degrees—maybe many of them use 
the freeway, and if you live on a cul-de-sac, they will always start by 
getting off your street—but each route is a distinct path through your 
local network of roads. In game theory terminology, your “strategy 
space”—the possible actions you might choose—is much larger than 
in simple games like Rock-Paper-Scissors, where by definition you 
only have three actions available.

So you have a lot of choices; but what makes this a “game”? It’s the 
fact that if you’re like most commuters, your goal or objective is to 
minimize your driving time. But the driving time on each of your 
many possible routes depends not just on which one you choose but 
also on the choices of all the other commuters. How crowded each route 
is determines your driving time as much or more than the length of 
the roads, their traffic lights, speed limits, and other fixed aspects. The 
more drivers who choose a given road, the longer the driving time for 
all routes that use that road, making them less attractive to you. 
Similarly, the fewer drivers there are on a road, the more you might 
want to choose a route that uses it (as long as the other segments on 
the route aren’t too busy).

The combination of your hundreds of possible routes with the 
choices made by the tens of thousands of other commuters presents 
you with a well-defined, if mind-boggling, optimization problem: 
pick the route with the lowest total driving time, given the choices of 
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all the other drivers. This is your “best response” in the commuting 
game. And it’s not at all unreasonable for us to assume you will at least 
try to act selfishly and choose your best response (just as Amanda 
Lewis begrudgingly did on Coffee Meets Bagel). Who wants to spend 
more time commuting than they need to?

Note that while the complexity of this game is much greater than 
something like Rock-Paper-Scissors, the fundamental commonality is 
that the payoff or cost of any individual player’s choice of action de-
pends on the action choices of all the players. There are important 
differences as well. In Rock-Paper-Scissors the two players have the 
same payoff structure, whereas if you and I live and work in different 
places, our cost structures will differ (even though we still both want 
to minimize driving time for our own commute). And if you and 
I commute at different times of day, we aren’t really even in the same 
round of the game. But these differences don’t alter the fundamental 
view of commuting as just another (albeit very complex) game. And 
this means that as with Rock-Paper-Scissors and Coffee Meets Bagel, 
it makes sense—from both qualitative and algorithmic perspec-
tives—to discuss its equilibrium, whether it is “good” or “bad,” and 
whether there might be a better outcome.

YOUR SELFISH WAZE

Commuting has been the game we have described ever since roads 
became sufficiently congested that the choices of other drivers af-
fected your own. But for many years this formulation wasn’t particu-
larly relevant, because people really didn’t have the ability to truly or 
even approximately optimize their route based on the current traffic. 
Commuting was a game, but people couldn’t play it very well. This is 
where technology changed everything—and, as we shall see, not nec-
essarily for the collective good.
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The first challenge in playing the commuting game is informational. 
As older readers will recall, for decades you had to plan your daily com-
mute by cobbling together radio and television traffic reports that were 
both incomplete (perhaps covering only major freeways, and providing 
little or no information about the vast majority of roads) and inaccurate 
(since the reports were only occasional, perhaps on the half hour, and 
therefore often stale). But even if one could magically always have perfect 
and current traffic data for every road, there is a second, algorithmic chal-
lenge, which is computing the fastest route between two points in a mas-
sive network of roadways, each annotated by its current driving time.

In a relatively short period, navigation apps such as Waze and Google 
Maps have effectively solved these problems. The algorithmic chal-
lenge was actually the easier one—there have long been fast, scalable 
algorithms for computing fastest routes (or “shortest paths,” as they are 
called in computer science) from known traffic. A  classical one is 
Dijkstra’s algorithm, named for the Dutch computer scientist who de-
scribed it in the late 1950s. Such algorithms in turn allowed the infor-
mational problem to be solved by crowdsourcing. Even though early 
navigation apps operated on traffic data not much better than in the 
pre-Internet days, they could still at least suggest plausible routes 
through a complex and perhaps unfamiliar city—a vast improvement 
over the era of dense and confusing fold-up maps in the glove compart-
ment. And once users started adopting the apps and permitting (wit-
tingly or not) their location data to be shared, the apps now had thou-
sands of real-time traffic sensors right there on the roadways.

This crowdsourcing was the true game-changer. Whatever pride 
you might have had in your navigational wizardry in your home city, 
the utility of a tool that automatically optimized your driving time in 
response to real-time, highly accurate, and granular traffic data on vir-
tually every roadway anywhere was just too alluring to decline. User 
populations grew to the hundreds of millions, further improving traffic 
data coverage and accuracy.
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From our game-theoretic viewpoint, modern navigation apps finally 
allowed any player in the commuting game to compute her best re-
sponse to all her “opponents” on the roads, anywhere and anytime. 
And there is little doubt that these apps are extraordinarily useful and 
efficient, and are doing the most obvious thing with the massive data 
at their disposal: looking out for the best interests of each individual 
user, finding their fastest route in light of the current traffic patterns.

THE MAXWELL SOLUTION

But there is another perspective worth considering, which is that be-
cause the apps are computing best responses for every player individ-
ually, they are driving the collective behavior toward the kind of 
competitive equilibrium we have discussed in Coffee Meets Bagel, 
Prisoner’s Dilemma, and Rock-Paper-Scissors—the apps enable, and 
thus encourage, selfish behavior on everyone’s part. And with Coffee 
Meets Bagel and Prisoner’s Dilemma, we already have seen cases in 
which the resulting competitive equilibrium may not be something 
that any particular individual is happy about. Surely anyone with even 
moderate experience with city driving has encountered situations in 

Fig. 17.  Typical screenshot from Google Maps, showing just a few of the many 
hundreds or thousands of routes between two locations in the greater Philadelphia 
area. The suggested routes are ranked by lowest estimated driving time.



1 0 6   ■  T H E  E T H I C A L  A L G O R I T H M

which individually selfish behavior by everyone seems to make eve-
ryone worse off—for instance, in the jockeying and slithering that 
occur when merging down to a few lanes of traffic at the entrance to 
the Lincoln Tunnel in New York City.

What might be an alternative to individually selfish, collectively com-
petitive driving? Surely no one believes we’d all be better off (at least in 
terms of driving time) if we rolled back the calendar and returned to the 
era of spotty traffic reports and folding maps. But now that we do have 
large-scale systems and apps with the ability to aggregate granular traffic 
data, compute and suggest routes to drivers, it might be worth consid-
ering making recommendations other than the obvious, selfish ones.

Let’s consider a conceptually simple thought experiment. Imagine 
a new navigation app—we’ll name it Maxwell, for reasons that will 
become clear later—that behaves similarly to Google Maps and Waze, 
at least at a high level. Like those apps, Maxwell gathers GPS and other 
location data from its users to create a detailed and up-to-date traffic 
map, and then for any user at any moment, it computes and suggests 
a driving route based on origin, destination, and the traffic. But Maxwell 
is going to use a very different algorithm to compute suggested routes—
an algorithm with a different goal, and one that will lead to a different 
and better collective outcome than the competitive equilibrium.

Instead of always suggesting the selfish or best response route to 
each user in isolation, Maxwell gathers the planned origin and desti-
nation of every user in the system and uses them to compute a coor-
dinated solution that is known in game theory as the maximum social 
welfare solution (hence the app’s name, Maxwell). In the commuting 
game, the maximum social welfare solution is the one that minimizes 
the average driving time across the entire population, instead of trying 
to minimize the driving time of each user individually in response 
to the current traffic. By minimizing average driving time, Maxwell is 
maximizing the time people have to do other things, which is pre-
sumably a good thing.
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It might seem like there shouldn’t be any difference between these 
two solutions, but there is. A stylized but concrete example will be 
helpful here. Imagine that there is a large population of N drivers in a 
city, and all of them want to simultaneously travel from location A to 
location B. There are only two possible routes from A to B; let’s call 
them the slow route and the fast route.

The slow route passes many schools, hospitals, libraries, restaurants, 
shops, and other places that generate a great deal of pedestrian traffic. 
It is littered with stop signs, crosswalks, speed bumps, and police 
making sure that all laws are obeyed. Because of this, it really doesn’t 
matter how many drivers take the slow route. The real bottleneck is all 
the stop signs, crosswalks, speed bumps, and police. In other words, 
we are going to assume that the time it takes to travel from A to B on 
the slow route is independent of the number of drivers on it. To make 
things concrete, let’s suppose that travel time is exactly one hour.

The fast route, on the other hand, is a freeway without speed limits 
or police, but it has limited capacity. If you’re the only one driving on 
it, it can be very fast—almost instantaneous—to get from A to B. But 
the more drivers who take the fast route, the less fast it becomes. 
Specifically, let’s assume that if M out of the N drivers take the fast 
route, the travel time for each of them is M/N hours. Since M is a 
whole number less than or equal to N, this means that the time it 
takes to travel the fast route is between 1/N (if only one driver takes 

1 hour always
slow

fast

A

(a) (b) (c)

B

x hours if
fraction x
drives it

1–x = 0

x = 1.0
A B

avg time = 1 hour

1–x = ½

x = ½
A B

avg time = ½ × 1 + ½ × ½
= ¾ hour

Fig. 18.  Illustration of simple two-route navigation problem, with a fixed-
driving-time slow route and a traffic-dependent fast route (a); equilibrium or 
Waze solution (b); Maxwell solution (c).
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it), which is nearly zero if N is large, and N/N, which is one hour if 
everyone takes it. So in the worst case, the fast route isn’t any faster 
than the slow route, but it depends on M. From your perspective as a 
driver, you’d like all the other N – 1 drivers to take the slow route, 
taking exactly an hour each, and for you to take the fast route and vir-
tually teleport to the destination. Of course, none of the other drivers 
like your solution.

Now let’s analyze the consequences of selfish behavior, of the kind en-
abled and even encouraged by existing navigation apps. If we think about 
it, such apps will recommend the fast route to the entire population of N 
drivers. This is because if the app recommended the slow route to even a 
small number of drivers—say, five—then these five drivers all experience 
the fixed one hour of slow route travel time, but any one of them would 
have been slightly better off taking the fast route, where the travel time 
will be (N – 5)/N = 1–5/N hours—just a shade less than an hour. So the 
competitive equilibrium that results from selfish routes is where eve-
ryone takes the fast route, which then becomes no faster than the slow 
route, and everyone’s driving time is exactly one hour. Note that in this 
equilibrium, each individual driver is actually indifferent to which route 
is taken—the driving time for both is an hour—but if even one driver is 
on the slow route, the drivers on the fast route are strictly better off.

What is Maxwell going to do in the same situation? It is going to pick 
half of the drivers—let’s say a random half—and suggest that they drive 
the slow route, and suggest the fast route to the other half. Before dis-
cussing why anyone would follow the suggestion to drive the slow 
route, let’s analyze the average driving time in this alternative solution. 
Obviously the N/2 drivers taking the slow route will, as always, experi-
ence a driving time of one hour. The N/2 drivers taking the fast route 
will experience a driving time of only (N/2)/N = 1/2 hour each. So the 
average driving time across the entire population is (1/2 × 1) + (1/2 × 
1/2) = 3/4 of an hour, or only forty-five minutes. It turns out this is the 
split of the population into the slow and fast route that minimizes the 



G a m e s  P e o p l e  P l a y   ■  1 0 9

average driving time. (For readers who both took and remember some 
calculus, if we let x denote the fraction of the population on the fast 
route, the average driving time is simply 1 – x + x2, which is minimized 
at x = 1/2 and yields the 3/4 hour average.)

In other words, by suggesting routes with a different goal—one with 
an explicit concern for the collective benefit rather than individual 
self-interest—we can reduce the overall driving time significantly, 
by 25 percent in this case. And we can do so without making anyone 
worse off than they would have been in the competitive equilibrium. 
So there is a better alternative to the competitive equilibrium in our 
toy example, and the gains may generally be even greater in complex 
networks of roads in the real world.1 (In 2018 a team of researchers 
from UC Berkeley presented empirical evidence that navigation 
apps indeed cause increased congestion and delays on side streets.) 
The question is whether and how we can actually realize this savings 
of collective driving time “in the wild.”

MAXWELL’S EQUATIONS

The first challenge in implementing Maxwell is algorithmic. While it 
was a simple calculus exercise to find the socially optimal solution in 
our toy two-route example, how will Maxwell do it when confronted 
with colossal networks of real roads and freeways, and thousands or 
more drivers, all with different origins and destinations? At least the 
selfish routes suggested by Google Maps and Waze can be computed 
quickly on large-scale networks, using Dijkstra’s algorithm.

Fortunately, it turns out that there are also fast, practical algorithms 
for computing the global solution that minimizes collective average 

1  A distinct but related side effect of selfish behavior in commuting is known as 
Braess’s paradox, in which adding capacity to a network of roadways actually 
increases congestion (or closing roads decreases congestion), and which has been 
reported to have occurred in large cities such as Seoul, Stuttgart, and New York 
City. Such phenomena cannot occur under the Maxwell solution.
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driving time in large networks, especially if the driving times on each 
road are a linear (i.e., proportional) function of the number or frac-
tion of drivers on them (like the roads in our earlier example, or more 
realistic ones such as a road that hypothetically takes 1/4 + 2x hours 
to travel if a fraction x of the population drives on it). This propor-
tional model actually seems like a reasonable one for real traffic, and 
we can easily envision deriving such models from the voluminous 
empirical data that services such as Waze already routinely collect, 
which provides samples of the driving times at different levels of traffic. 
And for such roads, the average driving time is then just a quadratic 
function (e.g., if a fraction x of drivers takes a 1/4 + 2x road, then the 
contribution to the overall average driving time from just this road 
will be (1/4 + 2x)x = 1/4x + 2x2).

Even though Maxwell must solve a very high-dimensional problem—
finding the exact fractions of drivers taking every road in the network, 
in a way that is consistent with everyone’s origins and destinations 
and is socially optimal—it is a problem of a well-studied and well-
understood type that has very practical algorithms. It is an instance of 
what are known as convex minimization problems, which can be solved 
by so-called gradient descent methods; this is just algorithm-speak for 
“walk downhill in the steepest direction to quickly get to the lowest 
point in the valley.” In our context, this simply means that we start 
with an arbitrary assignment of driving routes and make incremental 
improvements to it until the collective driving time is minimized.

What if the driving times on the roads are not proportional to traffic 
but are more complex functions? For example, consider a hypothet-
ical road whose driving time is x/2 for x < 0.1 but is 10x + 2 for x > = 0.1. 
So the time it takes to drive this road takes a sudden, discontinuous 
jump once 10 percent or more of the population takes it. For more 
complex roads such as these, we do not know of fast algorithms that 
are always guaranteed to find the socially optimal solution, but we do 
know of good techniques that work well in practice. And in these 
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more complex cases, the improvement of the socially optimal solu-
tion over the selfish equilibrium can be much greater than in the 
proportional-road setting. Thus at least the algorithmic challenges in 
implementing Maxwell seem surmountable.

CHEATING ON MAXWELL

But as is often the case in settings in which human preferences and game 
theory are involved, the biggest challenge Maxwell would face in the 
real world has less to do with good algorithms and more to do with 
incentives. Specifically, why would anyone ever follow the advice of 
an app that sometimes doesn’t suggest the route that would be fastest 
for him at that given moment? Consider any particular driver assigned 
to the slow route in the earlier example—he could always “defect” to 
the fast route and reduce his driving time, so why wouldn’t he? And if 
everyone did this, they all revert to the competitive equilibrium of 
existing apps.

If we think about it for a moment, it seems possible that even cur-
rent navigation apps such as Google Maps and Waze could also be 
susceptible to various kinds of cheating or manipulation. For example, 
I could lie to Waze about my intended origin and destination, in an 
effort to influence the routes it recommends to other users in a way 
that favors me—creating false traffic that causes the Waze solution to 
route other drivers away from my true intended route. Manipulation 
of this variety apparently occurred in residential Los Angeles neigh-
borhoods frustrated by the amount of Waze-generated traffic, as 
reported by the Wall Street Journal in 2015:

Some people try to beat Waze at its own game by sending 
misinformation about traffic jams and accidents so it will steer 
commuters elsewhere. Others log in and leave their devices in 
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their cars, hoping Waze will interpret that as a traffic standstill 
and suggest alternate routes.

But the incentive problems that Maxwell faces are arguably even worse, 
because they are not simply about drivers lying to the app; rather, the 
problem is drivers disregarding its recommendations entirely when 
they are not best responses.

There are a couple of reasonable replies to this concern. The first is 
that we may eventually (perhaps even soon) arrive at an era of mostly 
or even entirely self-driving cars, in which case the Maxwell solution 
could simply be implemented by centralized fiat. Public transporta-
tion systems are generally already designed and coordinated for col-
lective, not individual, optimality. If you want to fly commercially 
from Ithaca, New York, to the island town of Lipari in Italy, you can’t 
simply direct American Airlines to take a nonstop route along the 
great circle between the two locations—instead you’ll have mul-
tiple flight legs and layovers, all for the sake of macroscopic efficiency 
at the expense of your own time and convenience. In a similar vein, it 
would be natural for a massive network of self-driving cars to be coor-
dinated so as to implement navigation schemes that optimize for col-
lective average driving time (and perhaps other considerations, such 
as fuel efficiency) rather than individual self-interest.

But even before the self-driving cars arrive en masse, we can im-
agine other ways Maxwell might be effectively deployed. One is that 
if, as in our two-route example above, Maxwell randomly chooses the 
drivers who are given nonselfish routes, users might have a stronger 
incentives to use the app, since over time the assignment of nonself-
ish routes will balance out across users, and then each individual user 
would enjoy lower average driving time. So while you might have an 
incentive to disregard Maxwell’s recommendation of a slower route 
on any given trip (which you might well discover by using Google 
Maps to see your selfish best-response route), you know that over 
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time you will benefit from following Maxwell’s suggestions (as long 
as others do as well). We might call this phenomenon cooperation 
through averaging, which is also known to occur when human sub-
jects play repeated rounds of Prisoner’s Dilemma. But perhaps there 
is a better and more general solution to these incentive concerns.

COOPERATION THROUGH CORRELATION

Let’s review where we are. Maxwell may have a better collective solution, 
but it is vulnerable to defection, and even the selfish navigation apps 
may be prone to manipulation. Both approaches have good algorithms, 
but the concern is that their goals can be compromised by human nature.

It turns out that sometimes these concerns can be overcome by 
considering yet a third notion of solution in games (our first being the 
selfish equilibrium, and the second being the best social welfare but 
non-equilibrium Maxwell solution). This third notion is known as a 
correlated equilibrium, and it too can be illustrated by a simple situa-
tion involving driving. Imagine an intersection of two very busy 
roads, one of which has a yield sign and the other of which does not. 
Then not only the law but also the selfish equilibrium is for drivers on 
the yielding road to always wait for an opening before continuing, 
and for drivers on the through road to speed along. Given what the 
drivers on the other road are doing, everyone is following their best 
response. But drivers on the yielding road suffer all the waiting time, 
which might feel unfair to them.

In this example a correlated equilibrium could be implemented 
with a traffic signal, which now allows drivers to follow strategies that 
depend on the signal, such as “If the light shows green to me, I will 
speed through, and if it shows red to me, I will wait.” If everyone fol-
lows this strategy, they are all best-responding, but now the waiting 
time is split between the two roads—a fairer outcome not possible with 
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only yield signs. The traffic signal is thus a coordination (or correlat-
ing) device that allows cooperation to become an equilibrium.

Can cooperation via coordination help solve Maxwell’s incentive 
problems? The answer is yes—at least in principle. Very recent research 
has shown how it is possible to design a variant of Maxwell’s 
algorithm—let’s call it Maxwell 2.0—that quickly computes a corre-
lated equilibrium, and enjoys three rather strong and appealing incen-
tive properties. First, it is in the best interest of any driver to actually 
use Maxwell 2.0: nobody has an incentive to opt out and use another 
app instead (unlike Maxwell 1.0). Second, it is in the best interest of 
any driver to honestly input his true origin and destination: one 
cannot beneficially manipulate the solution found by Maxwell 2.0 by 
lying to it. (This is a property known as “truthfulness” in game 
theory.) Third and finally, it is in the best interest of any driver to ac-
tually follow the route recommended by Maxwell 2.0 after he sees it. 
So all drivers want to use Maxwell 2.0, and to use it honestly—both 
in what they input to it and in following its output.

How does Maxwell 2.0 achieve these apparently magical proper-
ties? Looking back to Chapter 1, it does so by applying differential pri-
vacy to the computation of the recommended routes in a correlated 
equilibrium. Recall that differential privacy promises that the data of 
any individual user cannot influence the resulting computation by 
very much. In this case a user’s data consists of both the origin and des-
tination he reports to Maxwell 2.0 and the traffic data his GPS loca-
tions contribute. The computation in question is the assignment of 
driving routes in a correlated equilibrium. Since a single driver’s data 
has little influence, it means manipulations like lying about where you 
want to go or leaving the app on in your parked car won’t benefit you 
or change what others do. And since a correlated equilibrium is being 
computed, your best response is to follow the suggested route.

Note that there was no explicit privacy goal here. Rather, the in-
centive properties we desired were a by-product of privacy. But at a 
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high level, it makes sense: if others can’t learn anything about what 
you have entered into Maxwell 2.0 or what it told you to do, then you 
can’t beneficially manipulate your inputs to change the behavior of 
others. That techniques developed for one purpose (like privacy) turn 
out to have applications elsewhere (like incentivizing truthfulness) is 
a common theme in algorithms. In fact, differential privacy has many 
other non-privacy-related applications—we will see another one in 
Chapter 4.

GAMES EVERYWHERE

Even though Maxwell is only a hypothetical app (at least for now), we 
spent some time on the commuting game because it crisply illustrates 
a number of more general themes, and does so in a situation with 
which many of us have daily experience. These themes include:

•	 Individual preferences (e.g., where you want to drive from and to) 
that may be in conflict with those of others (e.g., traffic).

•	 The notion of a competitive or “selfish” equilibrium, and the obser-
vation that convenient modern technology (e.g., Waze) might drive 
us toward this equilibrium.

•	 The observation that there might be socially better outcomes that 
can be found with fast algorithms (e.g., Maxwell) that also enjoy 
good incentive properties (e.g., Maxwell 2.0).

•	 The lesson that when an app is mediating or coordinating the prefer-
ences of its users (as opposed to simply using their data for some other 
purpose, such as building a predictive model), the algorithm design 
must specifically take into consideration how users might react to its 
recommendations—including trying to manipulate, defect, or cheat.

In the rest of this chapter, we’ll see that these same ideas apply in a 
wide variety of other modern, technology-mediated interactions, from 
routine activities such as shopping and reading news to more specialized 
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situations such as assigning graduating medical students to hospital 
residencies, and even to kidney transplants. In some cases we’ll see 
that the algorithms involved might be pushing us toward a bad equi-
librium, and in other cases we’ll see they are doing social good. But in 
all of them, the design of the algorithm and the preferences and de-
sires of the users are inextricably intertwined.

SHOPPING WITH 300 MILLION FRIENDS

Like driving, shopping is another activity that many of us engage in daily 
and that has been made more social and game-theoretic by technology. 
Before the consumer Internet, shopping—whether for groceries, plane 
tickets, or a new car—was largely a solitary activity. You went to phys-
ical, local stores, and your decisions were based on your own experience 
and research (and perhaps the advertising you were exposed to). For 
bigger purchases such as a car or a television, there might be publica-
tions such as Consumer Reports. But for most things, you were more or 
less on your own. As in the commuting game, you had shopping prefer-
ences—admittedly more complex, multifaceted, and harder to articu-
late than simply wanting to drive from point A to point B. But there were 
very few tools to help you optimize your decisions. It was the shopping 
equivalent of the era of spotty traffic reports and fold-up maps.

As readers will have experienced, all of this changed with the explo-
sive growth of online shopping. Once we began researching and pur-
chasing virtually everything imaginable on the web, we provided retail-
ers such as Amazon extremely fine-grained data on our interests, tastes, 
and desires. And as we have discussed in previous chapters, machine 
learning could then take this data and build detailed predictive models 
that generalized from the products and services we already did like to 
the ones we would like if only we were made aware of them. The technical 
term in the computer science community for this general technology is 
collaborative filtering (which was widely used in the Netflix competition, 


